

1. Solve the initial value problem

$$\begin{cases} \frac{d^4u}{dt^4} + \frac{d^2u}{dt^2} = e^{-t}, \\ u(0) = \frac{du}{dt}(0) = \frac{d^2u}{dt^2}(0) = \frac{d^3u}{dt^3}(0) = 0. \end{cases}$$

2. Consider the complex function

$$F(z) = \frac{z+1}{z^4 + 5z^2 + 4}.$$

- (a) Compute the inverse Laplace transform of F using the integral formula (you can also verify that you got the correct result by alternatively computing the inverse Laplace transform using the properties of $\mathcal{L}[\cdot]$ and Laplace transforms of known examples).
- (b) Restricting F on \mathbb{R} (i.e. think of F as a function from \mathbb{R} to \mathbb{C}), compute the inverse Fourier transform of F .

3. For the functions $f : [0, 1] \rightarrow \mathbb{R}$ given below, compute its expansion into a Fourier series

$$f(x) = \frac{1}{2}a_0 + \sum_{n \in \mathbb{N} \setminus \{0\}} (a_n \cos(2\pi nx) + b_n \sin(2\pi nx)).$$

- (a) $f(x) = \sin^2(2\pi x)$,
- (b) $f(x) = x \sin(2\pi x)$,
- (c) $f(x) = e^{-x}$.

4. Consider the initial value problem for the modified heat equation on $x \in [0, 1]$ for some $a \in \mathbb{R}$ with Dirichlet conditions:

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) - \frac{\partial^2 u}{\partial x^2}(x, t) - au(x, t) = e^{-2x} & \text{for } t > 0, x \in (0, 1), \\ u(x, 0) = 0, \\ u(0, t) = u(1, t) = 0 & \text{for } t > 0. \end{cases}$$

Find an expression for the solution u .

5. Let us consider the same initial value problem as in Exercise 4 but with Neumann boundary conditions instead (in the case of the heat equation, these model an *insulated endpoint*):

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) - \frac{\partial^2 u}{\partial x^2}(x, t) - au(x, t) = e^{-2x} & \text{for } t > 0, x \in (0, 1), \\ u(x, 0) = 0, \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(1, t) = 0 & \text{for } t > 0. \end{cases}$$

Find an expression for the solution u . (Hint: You might want to extend your functions as even 2-periodic functions in x before decomposing in Fourier modes.)

6 (Extra). The n -moment of a function $f : [0, +\infty) \rightarrow \mathbb{C}$ is defined by

$$\mu_n = \int_0^{+\infty} t^n f(t) dt,$$

provided, of course, this integral converges. Show that, if all n -moments of f converge and

$$\sup_{n \in \mathbb{N}} \int_0^{+\infty} t^n |f(t)| dt < +\infty,$$

then

$$\mathcal{L}[f](z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \mu_n z^n.$$

In particular, it follows from the above that $\mathcal{L}[f](z)$ in this case extends holomorphically at $z = 0$ and the moments of f can be calculated in terms of the coefficients of the Taylor expansion of $\mathcal{L}[f](z)$ at $z = 0$.